NDMM patients with high levels of circulating tumor cells are distinguished by increased bone marrow plasma cell proliferation

Cathelijne Fokkema, M.M.E. de Jong, S. Tahri, Z. Kellermayer, C. den Hollander, P.W.M. Vermeulen, N. Papazian, M. van Duin, A. Broijl, P. Sonneveld and T. Cupedo

Department of Hematology, Erasmus MC Cancer institute Rotterdam, the Netherlands

18th International Myeloma Workshop 9th of September 2021

Disclosures

A.C. Fokkema has no relationships to disclose

High levels of circulating tumor cells are associated with unfavourable disease outcome

- W.I. Gonsalves et al. Leukemia (2014)
- M. Granell et al. Haematologica (2017)
- R. Chakraborty et al. Haematologica (2017)
- S. Huhn et al. Bone Marrow Transplant. (2017)
- L. Sanoja-Flores et al. Blood Cancer J. (2018)

J.J. Garcés et al. EHA (2021)

MM patients with high levels of CTCs have a gene signature comparable to PCL patients

BM samples of primary PCL and a subset of NDMM patients cluster based on their **transcriptomic profiles**.

- → These patients have relatively **high levels of** circulating tumor cells (CTCs)
- → PCL-like Myeloma

D. Hofste op Bruinink, IMW abstract OAB 008

NDMM patients with a PCL-like gene signature have a worse OS

D. Hofste op Bruinink, IMW abstract OAB 008

Hypothesis

High levels of circulating tumor cells in MM patients are a reflection of agressive disease biology.

Unfavourable disease course: due to a unique circulating clone or due to altered bone marrow environment?

1. Can we identify a unique circulating clone in PB of patients with high levels of CTCs?

Study design: paired samples from BM and PB

Defining MM cell clusters by single cell sequencing

scRNAseq reveals distinct subpopulations

45,953 plasma cells from 5 patients paired BM and PB samples.

Plasma cells from BM and PB contain similar clusters and gene expression

Plasma cells from BM and PB display similar gene expression

35 differential genes

Conclusion

Circulating tumor cells and bone marrow plasma cells display similar transcriptional states.

No evidence for a unique **circulating clone** in more aggresive disease.

2. Can we identify unique characteristics of BM plasma cells in patients with high versus low levels of CTCs?

~ Common Myeloma mutations are evenly divided ~

Erasmus MC

Patients with different levels of CTCs have similar clusters

Patients with high levels of CTCs upregulate genes related to cell cycle and proliferation

Upregulated pathways high CTC levels:

Cell cycle

DNA replication

Mitotic G1-G1/S phases

DNA strand elongation

S phase

G1/S-specific transcription

DNA replication pre-Initiation

M phase pathway

Unwinding of DNA

Licensing factor removal from origins

Chen EY et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013

Ki67 and Stathmin 1 are present in all clusters of patients with high CTC levels

The number of cycling cells is significantly increased in patients with a high levels of CTCs

Conclusions

- No transcriptionally unique circulating clone in patients with high CTC levels.
- Proliferation of BM PCs is increased in patients with high levels of CTCs.

Increased bone marrow **plasma cell proliferation** may be one of the mechanisms driving CTC levels and disease course

Acknowledgements

Madelon de Jong Zoltán Kellermayer

Natalie Papazian Sabrin Tahri Chelsea den Hollander Michael Vermeulen

Mark van Duin Davine Hofste op Bruinink

Daan Koedoot

Jasper Koenders Lizzy Bestebreur

Suzanne Ho-Sam-Sooi

Eric Bindels

Mathijs Sanders

Chiel Wevers

Remco Hoogenboezem

Lanpeng Chen Paola Pisterzi

Annemiek Broijl, Tom Cupedo & Pieter Sonneveld

a.c.fokkema@erasmusmc.nl www.myelomarotterdam.nl

More single cell data from the Cupedo group?

www.bmbrowser.org

Bone Marrow Browser

10X Genomics single cell RNA-sequencing datasets of bone marrow non-hematopoietic cells, immune cells and tumor cells

Isolated from newly-diagnosed multiple myeloma patients and non-cancer control patients

For full description of datasets and methods please see Links page and: De Jong et al., Nat Immunol. 2021 Jun; 22(6):769-780

Datasets generated by Myeloma Research Rotterdam, part of the ErasmusMC Cancer Institute

Click on a subset below to analyze gene expression (opens in a new tab)

Non-hematopoietic cells

CD38-positive immune cells

CD38-negative immune cells

Multiple Myeloma cells

Comments and feedback are appreciated: bmbrowser@erasmusmc.nl

