Targeting GCK in RAS-mutant multiple myeloma offer a promising therapeutic approach

Shirong Li¹*, Jing Fu¹*, Jun Yang¹, Huihui Ma¹, Markus Y. Mapara¹, Christophe Marcireau² and Suzanne Lentzsch¹

¹Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.

²Sanofi, Paris, France
Conflict-of-interest disclosure

S. Lentzsch reports Caelum Biosciences equity ownership and membership on Caelum Bioscience’s board of directors or advisory committees; consultancy for Janssen, Takeda, GSK, Antengene, Adaptive and Sorrento and received research funding from Karyopharm and Sanofi.

M.Y.M. reports receiving research funding from Ossium Health, Inc and consultancy for Ossium Health.

C.M: Sanofi full time employee.

The remaining authors declare no competing financial interests.
RAS mutation in Multiple Myeloma

A. Multiple Myeloma

- 57.0% RASWT
- 23.7% K-RASMut
- 19.3% N-RASMut

B. Kaplan-Meier Plot

CoMMpass IA15

C. Abnormal proliferation, differentiation
GCK is a novel therapeutic target in MM with RAS mutation

- Germinal Center Kinase (GCK), also named MAP4K2, is an upstream activator in the MAPK pathway
- GCK is predominantly and highly expressed in the germinal center of B cells
- GCK participates in B cell differentiation into plasma cells
- GCK is a potential therapeutic target in colon cancer, DLBCL, AML and ALL
GCK is critical for proliferation and survival of RASMut MM cells

A. Tet-on shCNTL Tet-on shGCK

RAS Mut

Dox - + - +

GCK β-Actin

MM.1S (K-RASG12A)

B. Proliferation relative to control %

Tet-on shCNTL Tet-on shGCK

MM.1S (K-RASG12A)

C. Apoptotic cells %

Tet-on shCNTL Tet-on shGCK

MM.1S (K-RASG12A)

D. Tet-on shCNTL Tet-on shGCK

RAS WT

Dox - + - +

GCK β-Actin

LP-1 (RASWT)

E. Proliferation relative to control %

Tet-on shCNTL Tet-on shGCK

LP-1 (RASWT)

F. Apoptotic cells %

Tet-on shCNTL Tet-on shGCK

LP-1 (RASWT)
Knockdown of GCK decreases c-MYC, IKZF1, IKZF3 and BCL6 expression in RAS^{Mut} MM cells

A.

- Tet-on shCNTL - + - +
- Tet-on shGCK - + - +

- GCK
- IKZF-1
- IKZF-3
- c-MYC
- BCL-6
- β-Actin

B.

- Tet-on shCNTL - + - +
- Tet-on shGCK - + - +

- GCK
- IKZF-1
- IKZF-3
- MYC
- BCL-6
- β-Actin

C.

The mRNA level relative to control

- MM.1S (K-RAS^{G12A})

- RPMI-8226 (K-RAS^{G12A})
- H929 (N-RAS^{G13D})
- U266 (RAS^{WT})

* indicates significant difference compared to control.
Rescue experiments exclude possible off-target effects of GCK shRNA

A

GCK

Q F H Q V K F

WT M5

GAG TTT CAC GAG TTT CAC

B

Dox

EV+ tet-on-shGCK GCK+ tet-on-shGCK GCK(M5)+ tet-on-shGCK

Exogenous GCK Endogenous GCK

IKZF1 c-MYC β-Actin

C

Vehicle Dox

Proliferation relative to CT %

D

Vehicle Dox

EV+ GCK GCK(M5)

Exogenous GCK Endogenous GCK

7AAD Annexin V

E

Vehicle Dox

Counts PI
Pharmacological blockage of GCK activity inhibits the growth of RAS$^{\text{Mut}}$ multiple myeloma
GCK is critical for MM tumor growth in vivo

A.

B.

C.

Vehicle

Dox

Tet-on-shCNTL

Tet-on-shGCK

GCK Staining

IKZF1 Staining

10 μM
GCK is critical for MM tumor growth in vivo

**

**

Total Fluc
1 week 2 weeks 3 weeks
0
1.0\times10^7
2.0\times10^7
3.0\times10^7
4.0\times10^7
5.0\times10^7
GCK Inhibition overcomes resistance to lenalidomide in MM

A.

<table>
<thead>
<tr>
<th>LEN (μM)</th>
<th>shCNTL</th>
<th>shCRBN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

CRBN, IKZF1, β-actin

H929 (N-RAS^{G13D})

B.

<table>
<thead>
<tr>
<th>TL4-12 (μM)</th>
<th>shCNTL</th>
<th>shCRBN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

CRBN, IKZF1, β-actin

H929 (N-RAS^{G13D})

Proliferation relative to CT %

![Graph showing proliferation relative to CT % for LEN at different concentrations](image)

![Graph showing proliferation relative to CT % for TL4-12 at different concentrations](image)
Conclusion
Acknowledgements

Columbia Multiple Myeloma and Amyloidosis Program
Shirong Li, PhD
Jing Fu, PhD
Jun Yang

Columbia BMT Program
Markus Y. Mapara, MD, PhD

SANOFI
Christophe Marcireau, PhD

The Organic Chemistry Collaborative Center
Donald W. Landry, MD, PhD
Shixian Deng, PhD
Xiaoming Xu, PhD