FAM46C-Dependent Tuning of **Endoplasmic Reticulum Capacity in** Multiple Myeloma

Enrico Milan

OSPEDALE SAN RAFFAELE

18th International Myeloma Workshop 2021 September 10th, 2021 Vienna, Austria

COI Disclosure

No COI to declare

FAM46C/TENT5C in Multiple Myeloma

FAM46C belongs to a metazoan-specific family of proteins with **4 human members (A-D)** sharing ~ 60% sequence identity but different tissue expression.

no variants

120

FAM46C is frequently and uniquely deleted/mutated in 20% myeloma patients, implying a PCspecific tumor suppressor activity.

(Barbieri et al., British Journal of Haematology, 2016)

FAM46C reduces myeloma proliferation rate and increases apoptotic rate

Silencing in WT MM line

Over-Expression in FAM46C-mutated MM lines

Non-MM cells

FAM46C is a **MM-specific** tumor suppressor

Zhu et al.; Cancer Research 2017 Fucci et al., Cell Reports 2020 Manfrini et al., Cancer Research 2020

FAM46C stabilizes Ig and ER-targeted mRNAs

Mroczek et al.; Nat Commun 2017

FAM46C is a **non-canonical poly(a) polymerase** that polyadenylates Ig mRNAs and other transcripts encoding ERtargeted proteins.

Fucci et al.; Cell Reports 2020

ER

FAM46C boosts the secretory apparatus

SILAC proteomic

FAM46C Over-expression in OPM2 mut cells

Electron Microscopy

FAM46C promotes Ig production and secretion **RPMI 8266**

Mock

FAM46C

Intracellular Lambda chain Secreted Lambda chain

Actin

Mock

FAM46C

Intracellular Lambda chain Secreted Lambda chain

Actin

shFAM46C

SILENCING

OVER-

EXPRESSION

OPM2 FLAG-FAM46C

FAM46C is induced under PRDM1 during plasma cell differentiation and sustains antibody production in vivo

Fucci et al.; Cell Reports 2020

Bilska et al.; Nat Commun 2020

FAM46C -/- mice produce fewer antibodies despite having more CD138high plasma cells as a consequence of accelerated differentiation.

FAM46C potent induction upon plasma cell differentiation suggests a key role in the ER reshaping to sustain antibody secretion.

FAM46C interacts with FNDC3 proteins at the ER membrane

DAPI

FAM46C interactome

Protein	Control IP	FAM46C IP
FAM46C		49
HYOU1	10	25
PABPC4		8
SLC25A3	4	11
PABPC1	3	9
SQSTM1		4
ХРОТ		4
FNDC3B		4
GARS		3
DNAJC11		3
SLC7A5		3
CALR		3
ITGB7		3
CTU2		3

FAM46C interacts with the ER transmembrane proteins FNDC3A and FNDC3B

Fucci et al.; Cell Reports 2020

FNDC3 proteins are required for FAM46C localization and activity

FAM46 members differ in their effects on ER

FAM46C and FAM46D have the most potent effects on the ER

FAM46C and FAM46D boost secretion beyond sustainability

ATP levels

FAM46C is tightly regulated by degradative pathways

1) FAM46C is rapidly degraded by the Ubiquitin Proteasome System (UPS)

2) UPS inhibition induces sequestration of FAM46C away from the ER in p62-positive aggregates

p62

Merge

Conclusions

Fucci et al.; Cell Reports 2020

- FAM46C boosts the secretory capacity and Ig production through the interaction with the ER membrane proteins FNDC3A and FNDC3B
 - To ensure sustainability, FAM46C is rapidly degraded by the UPS or sequestered away from the ER in p62-positive aggregates
 - Basis for MM-specific oncosuppressive activity of FAM46C

Immunity vs Malignancy

In MM patients Loss of Function mutations have been identified in PRDM1, XBP1 and FAM46C

Can we learn a lesson from MM genetics and understand how to modulate the secretory activity?

Is MM trying to reduce but not eliminate Ig production?

Acknowledgements

Cencilab: Simone Cenci Ugo Orfanelli Tommaso Perini Massimo Resnati

Monica Fabbri Lorenzo Fumagalli Andrea Locatelli Maria Materozzi Laura Oliva Matteo Trudu

Former Members: Chiara Fucci Elena Riva Elena Ruggieri Floriana Cremasco Francesca Paradiso

Multiple Myeloma Research Foundation, OSR SEED Grant, International Myeloma Foundation, Fondazione Cariplo

Collaborators:

Luca Rampoldi Andrea Raimondi Annapaola Andolfo

Mario Nuvolone (Policlinico San Matteo, Pavia)

Angela Bachi (IFOM)

Stefano Biffo (INGM) Nicola Manfrini

