Temporal-weight Estimation Of The Copy Number Alterations Of 1384 Multiple Myeloma Patients Defines An Ancestrality Index Impacting Patients Survival

Andrea Poletti

18th International Myeloma Workshop
September 8-11, 2021. Vienna, Austria
The Multiple Myeloma CNAs heterogeneity

Primary genetic events:
- IGH translocations
- Hyperdiploidy

Secondary genetic events:
- Copy number abnormalities
- DNA hypomethylation
- Acquired mutations

Kumar, S. et al. (2017) Nature Reviews

Davis, A. et al. (2017) Reviews on Cancer
The Multiple Myeloma clinical and genetic onset

- Active MM is defined by the onset of clinical symptoms, but there is no clear connection between the MM diagnosis and the genomic lesions in the tumor cells.

- However, genetic alterations are widely recognized to have a driving role for tumors onset as they can cause all the biological “hallmarks of cancer”

- Alterations present in the MM tumors at diagnosis are often found in MGUS and SMM, so if precisely characterized, they could support a correct MM diagnosis in “ambiguous” SMM patients
The importance of **timing** the genetic cancer alterations

- The recognition of *ancestral alterations* can help identify true «driver» lesions, relevant for the onset of the MM and clinical symptoms.

- Using statistical algorithms, it's possible to create a **time-map** of the acquired **CNAs** during **MM oncogenesis** and rank them as “late” or “early”.

- The correct CNAs’ timing in previous works is biased by the low number of patients analysed (< 100).

Maura *et al.* Nat Comm (2019)

Harmonizing datasets – the importance of statistical power

High statistical power is required to precisely time CNAs, especially rare ones.

We combined two huge (but different) different datasets:
- MM-BO: 512 samples profiled with SNP-arrays
- CoMMpass cohort: 871 samples profiled with WGS

BUT
- Need for data-harmonization to compare CN profiles, since clonal and subclonal CN events can be biased by multiple methodological aspects:
 - different assays methods
 - different tools/pipelines
 - different analysis algorithm parameters
Bradley-Terry algorithm to date MM CNAs – a precise time map

- **SPORT classification algorithm**
 - PLAYERS = any secondary (non-HD) CNAs
 - MATCHES = clonality contest

 => any clonal and subclonal CNAs «competed», according to 10% clonality difference threshold

 => only secondary CN events do participate to the competition since IgH traslocations and Hyperdiploidy are primary ancestral events (they are always clonal)

![Reconstructing events during the life history of each tumor](image1.png)

Jolly C. and Van Loo P. Genome Biology (2018)

- **Chr 1q amp (CKS1B)**
- **Chr 13q del (RB1)**
- **Chr 17p del (TP53)**
- **Chr 6p amp (CCND3)**
Implementatation of CNAs timing information to date MM patients’ *ancestrality*

• We developed a **combinatorial scoring model** to produce an **ANCESTRALITY INDEX (AI)** that weights each CNA in any given sample for its relative Timing Estimate (TE).

For each patient (p):

\[
AI_p = \sum_{i=1}^{n} (CNA_i \times TE_i) = (CNA_1 \times TE_1) + (CNA_2 \times TE_2) + (CNA_3 \times TE_3) \ldots
\]

• Statistical categorization of patients according to the **AI quartiles**:
 – «*ancestral*» (high AI) patients
 – «*young*» (low AI) patients
"ancestral" and "young" MM patients => survival analysis

- Patients included in the «ancestral» time-weighted category present worse prognosis, as compared to patients included in the «young» time-weighted category, in terms of both OS and PFS.

- At the time of MM diagnosis, the timing characterization of the whole CNAs landscape significantly impact patients’ survival.
• CNAs can be dated during MM oncogenesis and evolution
• OLD CNAs are probably driver alterations => patients with high AI have bad prognosis;
• The timing analysis of molecular lesions (particularly CNAs) help in defining newly diagnosed patients’ clinical characteristics and might identify driver lesions
• The use of AI score in SMM patients might help in defining their evolutive status by distinguish either MGUS-like or high-risk SMM subtypes

the whole CNAs landscape carries information concerning the MM evolution ancestrality state and this impacts patients’ survival
By this approach, it has been possible to define **genomically distinct states at the onset of MM**, i.e.

- **“young/simple” MM tumors** with **low** temporal-genomic heterogeneity
- **“ancestral/evolved” tumors** with **multiple** different driver ancestral alterations distributed across the genomic profile

Clinical correlations highlighted that:

- novel biomarkers can be defined, based on the **genome ancestrality**, useful for the clinical management of MM patients
- MM evolution in **pre-clinical phases** can be elucidated, thus possibly improving knowledges on high-risk SMM patients
ACKNOWLEDGMENTS

Multiple Myeloma Research Unit
Prof. Michele Cavo

MOLECULAR BIOLOGY LAB
Carolina Terragna
Marina Martello
Enrica Borsi
Silvia Armuzzi
Ilaria Vigliotta
Barbara Taurisano
Ignazia Pistis

CLINICAL RESEARCH UNIT
Elena Zamagni
Paola Tacchetti
Lucia Pantani
Katia Mancuso
Serena Rocchi
Ilaria Rizzello
Gabriella De Cicco
Alessio Fusco
Margherita Ursi

DATA MANAGERS
Giada Giulia Riso
Simona Barbato
Federica Pedali

BIOINFORMATIC TEAM
Andrea Poletti
Vincenza Solli
Gaia Mazzocchetti