Personalized Treatment of Relapsed MM

Marc S. Raab, MD Professor of Medicine, Clinical Director, Heidelberg Myeloma Center Department of Medicine V, Heidelberg University Medical Center & German Cancer Research Center DKFZ Heidelberg, Germany

Disclosure Information

Marc S. Raab

I have the following financial relationships to disclose:

- Consultant for: Amgen, BMS, GSK, Janssen, Novartis, Pfizer, Sanofi, Takeda
- Speaker's Bureau for: Amgen, BMS, Janssen
- Grant/Research support from: Amgen, Novartis, Sanofi
- Stockholder in: none
- Employee of: none

I will discuss the following off label use and/or investigational use in my presentation: *encorafenib, binimetinib*

How to define Personalized Therapy in MM

Immunotherapeutic Targets

- Epitopes: SLAMF7, CD38, BCMA, GPRC5D, FcRH5, ...
- Technology: MoABs, ADCs, TCEs, CAR-Ts

Molecular Targets

- Cytogenetics: translocations, gains/deletions
- Genomics: mutations, signatures, molecular mechanisms

Generic Targets

- MRD, residual lesions, ...
- Resistance mechanisms
- Activated signaling pathways

Genomics

ART. Initial	ICLE doi:10.1039/value09837
Micha Christ Daniel Stacey Ted Lis S. Vin Ravi V Levi A	per Cell rticle
Jens Carrier Marce	JOURNAL OF CLINICAL ONCOLOGY Mutational Spectrum, Copy Number Changes, and Outcome: Pasults of a Sequencing Study of Patients With Nature communications
	ARTICLE Received 2 Oct 2014 Accepted 24 Mar 2015 Published 23 Apr 2015 APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma

- Well-known hallmark translocations involving
 IgH locus t(11;14), t(4;14), t(14;16), t(14;20)
- > Diverse mutational landscape,

few recurrently mutated genes:

- KRAS/NRAS: ∑20-25% each
- FAM46C: ca. 12%
- TP53: ca.8%
- **BRAF**: 4%
- TRAF3 and DIS3: <3%
- > Mutational clusters within pathways:
 - MAPK pathway: ca. 50%
 - Akt/NF-кВ pathways: ca.17%

Targeting BCL2 is effective in patients with t(11;14) myeloma

Enrichment of B cell genes in venetoclax sensitive samples. Flow cytometry of cell surface markers predicts venetoclax sensitivity.

BH3-Mimetics require predictive markers for optimal use in MM

Plasma cell biology

McI-1 dependent †Proteasome Inhibitors †Immunomodulatory agents

B cell biology

Bcl-2 dependent +Proteasome Inhibitors +Immunomodulatory agents

Molecular therapy in Multiple Myeloma: Proof of Concept

Targeting the BRAF V600E Mutation in Multiple Myeloma

Mindaugas Andrulis¹, Nicola Lehners^{2,3}, David Capper⁴, Roland Penzel², Christoph Heining⁵, Jennifer Huellein⁵, Thorsten Zenz^{2,5}, Andreas von Deimling⁴, Peter Schirmacher¹, Anthony D. Ho², Hartmut Goldschmidt^{2,6}, Kai Neben², and Marc S. Raab^{2,3}

862 | CANCER DISCOVERY AUGUST 2013

www.aacrjournals.org

GMMG-BIRMA trial - Overview

RRMM with mutant BRAF V600E/K in > 50% of MM cells BRAF/MEK Inhibition in Relapsed/Refractory

Multiple Myeloma: Phase 2 trial

Overall Response Rate (ORR)

Secondary: Progression-free survival, Overall survival

Exploratory aims:

Primary:

- Analysis of efficacy and safety parameters
- Effect of study drugs on signaling pathways in multiple myeloma cells derived from bone marrow.
- Investigating the potential mechanism of resistance to combined BRAF/MEK inhibition

BIRMA trial – Safety

Patient characteristics (n=12):

 Prior lines of therapy, median 	5 (2-14)
Prior PI+IMiD	12/12
 Prior anti-CD38-Ab 	6/12
<u>Safety:</u>	
AEs related:	9/12

AEs related:9/1All grade:incl. macula edema, blurred vision,
cramps, arthralgia, skin rash, LV functionGrade 3/4:anemia, thrombopenia, hypertension

<u>SAE</u>: pneumonia, tooth extraction (nr)

2/12

BIRMA trial – Efficacy

Response rates:

Primary endpoint:

• ORR 83% 10/12

(lower limit of the 95% CI 56.4%, one-sided exact binomial test, p<0.0001)

≥VGPR 50% 6/12
 ≥nCR/CR 25% 3/12

Secondary endpoints

- **PFS**, median
- Best response, median
- OS at 2 years

6 months (CI 3.4-11.3)

1.8 months

55%

PLEASE DO NOT POST

BIRMA trial – Correlative Science

Identification of resistance mechanisms:

- Samples pre-/post-Tx (T1; T2)
- WGS, RNAseq, IHC pERK

>RAF mutation:

•Pts 1-5: BRAF p.V600E (T1+T2)

>RAS mutations:

- •Pts 1+2: KRAS p.G13D <u>new at relapse (T2)</u>
- •Pt 3: NRAS p.Q61K and KRAS p.G12V <u>new at relapse (T2)</u>
- •Pt 4: NRAS p.Q61R <u>in T1+2</u> (best response stable disease)
- •Pt 5: Translocation involving BRAF <u>new at relapse (T2)</u>, no RAS^{mut}

Targeting RAS signaling

- Germinal Center Kinase (GCK), also named MAP4K2, is an upstream activator in the MAPK pathway
- GCK is critical for proliferation and survival of RAS^{Mut} MM cells
- Pharmacological blockage of GCK activity inhibits the growth of RAS^{Mut} multiple myeloma

Summary

- Personalized therapies emerge in multiple myeloma
- Immunotherapy (antibody-based, cell-based) to become available in rrMM
- Molecular targets (BCL-2, BRAF) promising for subsets of patients
- Combined BRAF/MEK inhibition induces rapid and deep responses in BRAF V600Emutant relapsed/refractory MM
- Pre-existing RAS mutations may predict poor response to BRAF/MEK inhibition
- Targeting sequelae of mutant RAS would be major achievement
- Exploiting molecular mechanisms, such as impaired DNA damage response, may hold promise for future generations of targeted therapies in MM

HEIDELBERG UNIVERSITY HOSPITAL

All **Patients** and their **Families**

