A novel algorithm to identify, characterize and define the prognostic impact of complex catastrophic events in Multiple Myeloma

V.Solli^{1,2}, A.Poletti^{1,2}, E.Borsi^{1,}, M. Martello^{1,2}, L.Pantani¹, S.Armuzzi^{1,2}, I.Vigliotta¹, E.Zamagni^{1,2}, P.Tacchetti¹, S.Rocchi^{1,2}, K.Mancuso^{1,2}, G.Mazzocchetti^{1,2}, B.Taurisano^{1,2}, I.Pistis¹, M.Cavo^{1,2}, C.Terragna¹

1IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna Italy 2DIMES – Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Seràgnoli Institute of Hematology, Bologna Italy

Conflict of interest

The authors declare no conflict of interests

Complex Catastrophic Events (CCEs)

- → neoplastic cells are characterized by *genomic instability*, which might cause the *rapid evolution* of the tumour
- → chromoanagenesis = complex structural rearrangements leading to the formation of new aberrant chromosomes

chromoanagenesis incidence = **2-3%** in all tumours

P.J Stephens et al.; 2011 Jan, Cell M.N.H. Luijten et al; 2018; Sep; Mutat. Res

CCEs in Multiple Myeloma

>3 CN state

LOH in 2N region

<3 CN state

HETEROZIGOSITY in 2N region

Aim & experimental plan

488 MM samples

- 1. CD138+ enrichment
- 2. DNA extraction
- 3. SNP Array (Affymetrix SNP Array 6.0 e Cytoscan HD)

genomic profiling:

- ChAS v3.3-Affymetrix
- Rawcopy tool
- personalized R scripts

CCEs characterization:

set-up of an original algorithm to detect and characterize CCES

CLINICAL CORRELATION

- 1. to detect CCEs in MM, with a focus on Chromotripsis, by using an original and reliable bioinformatic algorithm
- 2. to characterize the genetic and genomic context of Chromotripsis
- 3. to correlate the presence of Chromotripsis with patient prognosis

C.C.E. detector 3.0

 count of the CN changes as compared to the diploid region (2N)

I F MATACIAK (II NAC NAAN CA -

- if the total number of CN changes is >3, it continues with detection and categorization of the event
- the events are categorized
- according to the reported guidelines
- the file output includes a list of detected events and their chromosomal position for each individual sample

t(14;16)

Frequency & co-segregation

Chromosonal	Targeted				_		
aberration	gene	Position		p_value	L		
del chr 17p	17p	ab		40.001	 	p-value	HR
	del TP53	chr 1p		<0.001		0.009	5.24
del chr 1p	mut <i>TP53</i>	chr2q		<0.001		0.013	2.27
	del <i>CDKN2C</i>	-l 1 1 -		40.001		0.03	2.75
	del <i>FAF1</i>	chr 11q		<0.001		0.02	3.52
amp chr 1q		chr 22g		<0.001		>0.001	3.05
Traslocations	amp <i>CKS1B</i>	0.002	3.4	101001]	0.009	2.35
t(4;14)		0.002	3.4 2.01	del <i>XBP1</i>		>0.001	4.68
t(14;20)		0.01	8			•	

3.55

0.04

Chromotripsis is predictive of clinical outcome

multivariate analysis

Event	p.value	C.I		
CALL.ChromoTripsis	0.04601 *	1.0065 - 2.055		
del <i>TP53</i> (17p13.1)	0.2854	0.4945 - 1.230		
Т(4;14)	0.00591 **	1.1275 - 2.041		

Event	p.value	C.I		
CALL.ChromoTripsis	0.0387 *	1.0246 - 2.490		
del <i>TP53</i> (17p13.1)	0.2766	0.3298 - 1.373		
Т(4;14)	0.0011 **	1.2897 - 2.771		

the impact of chromotripsis on PFS and OS is *independent* from other adverse prognostic factors

PI-based therapy & chromotripsis

Masaki R. et al, 2016, Int J Hematol Sinan X. et al., 2021, Cell and Molecular life Sciences → ER stress pathway deregulation is related to the decrease of response to PI-based therapy

ER STRESS pathway's gene				
Targeted	chr	n volue	HR	
gene	position p_value		ПК	
amp XBP1	22q12.1	ns	ns	
del <i>XBP1</i>	22q12.1	>0.001	4.68	
amp <i>ATF4</i>	22q13.1	0.03	6.05	
del <i>ATF4</i>	22q13.1	0.01	3.01	
amp/del <i>ATF6</i>	1q23.3	ns	ns	
amp/del <i>CRBN</i>	3p26.2	ns	ns	
amp/del <i>DDIT3 (CHOP)</i>	12q13.3	ns	ns	
amp/del <i>EIF2AK3 (PERK)</i>	2p11.2	ns	ns	
amp/del <i>ERN1 (IRE1a)</i>	17q23.3	ns	ns	

→ CNAs in 2 genes of the ER stress pathway correlates with the presence of chromotripsis

Chromotripsis & Clonal Evolution

<u>Chromotripsis</u>				
<u>Diagnosis</u>	n° event	4		
Clonal Subset 55 pts	% events	7%		
Relapse Clonal Subset	n° event	4		
55 pts	% events	7%		

- → Chromothripsis is detectable as clonal event in MGUS and SMM that will progress to multiple myeloma.
- → Chromothripsis is conserved over time after precursor progression and at relapse after treatment, as clonal, without any significant changes in its structure and copy number profile.

Maura F et al, 2021, Semin Cell Dev Biol

- 1. CCEs Dectector 3.0 highlights and characterizes CCEs across the whole genome
- 2. CCEs frequency was 36%; chromotripsis frequency was 9%
- 3. chromotripsis *significantly impact* PFS and OS of newly diagnosed MM patients
- 4. chromotripsis events significantly correlate with CNAs in TP53, XBP1, ATF4
- 5. in the genome throughout MM course, thus suggesting their key-role in driving disease progression

IRCCS Istituto di Ricovero e Cura a Carattere Scientifico

ACKNOWLEDGMENTS

MOLECULAR BIOLOGY LAB

Carolina Terragna Marina Martello **Enrica Borsi** Silvia Armuzzi **Ilaria Vigliotta Barbara Taurisano Ignazia Pistis**

BIOINFO NERDS

Vincenza Solli **Andrea Poletti** Gaia Mazzocchetti

Multiple Myeloma Research Unit

Prof. Michele Cavo

CYTOGENETIC LAB Nicoletta Testoni Giulia Marzocchi

DATA ANALYSIS and MANAGEMENT Giada Giulia Riso Simona Barbato Federica Pedali

IMMUNOLOGY LAB Mario Arpinati Gabriella Chirumbolo

CLINICAL **RESEARCH UNIT**

Elena Zamagni Paola Tacchetti Lucia Pantani **Katia Mancuso** Serena Rocchi Ilaria Rizzello Gabriella De Cicco Alessio Fusco Margherita Ursi