

MANAGEMENT OF INFECTIONS IN MULTIPLE MYELOMA

Michel Delforge

Department of Hematology and Leuven Cancer Institute University of Leuven, Belgium

Multiple myeloma patients have an increased risk for infections

- population based study from Sweden
- n = 9,253 MM patients diagnosed between 1988 and 2004 and 34,931 matched controls (followup till 2007)
- MM patients had a 7-fold increased risk for developing any infection compared to matched controls
- type of infections:
 - bacterial: 7-fold increased risk
 - viral: 10-fold increased risk

Disease	Myeloma (n=9 253)	Total Controls (n=34 931)	HR* (95%Cl)
Any infection	3781	6519	7.1
(combined)**			(6.8-7.4)
Specific infections Bacterial***	3361	5792	7.1
Pneumonia	2150	3504	7.7
Osteomyelitis	37	100	(7.2-8.1) 3.5 (2.4-5.2)
Septicemia	1336	960	15.6
Pyelonephritis	152	570	(14.3-17.1) 2.9 (2.4-3.5)
Cellulitis	164	564	3.0
Meningitis	51	28	(2.5-3.6) 16.6 (10.2-27.1)
Endocarditis	35	73	5.3 (3.4-8.1)
Viral****	607	556	10.0
			(8.9-11.4)
Influenza	150	245	6.1
			(4.9-7.6)
Herpes zoster	282	171	14.8
			(12.1-18.2)

Causes of immune dysfunction in MM

Immune suppression according to drug classes

	Neutropenia	Lymphopenia	Hypogammaglobulinemia
Chemotherapy	XX	Х	Х
Steroids		Х	
IMiDs	Х		
PI	Х	Х	
Anti-CD38 MoAb	Х	Х	XX
Anti-BCMA	XX	Х	XX

IMiDs: Immmunomodulatory Drugs PI: Proteasome inhibitors MoAb: Monoclonal Antibody BCMA: B-Cell Maturation Antigen

Most common pathogens in multiple myeloma

Bacterial

- Germs:
 - Gram-positive (S. pneumoniae, S. aureus, coagulase-negative staphylococci),
 - Gram-negative (H. influenzae, Enterobacteriaceae)

• Viral

- Varicella-zoster virus, cytomegalovirus
- Influenza
- Hepatitis B or C
- SARS-CoV-2

Opportunistic

- Pneumocystis jirovecii
- invasive aspergillosis

Infections during the course of myeloma

Impact of evolving treatment on infection in MM

Cumulative cases of infection

Characteristics of Infection Episodes	Overall No. Infections $=$ 345 (%)
Categories of infection	
Microbiologically defined-bacterial	45 (13.0)
Microbiologically defined-fungal	5 (1.5)
Microbiologically defined-viral	50 (14.5)
Clinically defined	200 (58.0)
Fever of unknown focus	45 (13.0)
Sites of infection	
Respiratory tract	196 (56.8)
Urinary tract	17 (4.9)
Gastrointestinal tract	38 (11.0)
Skin and soft tissue	29 (8.4)
Blood	17 (4.9)
Multiple	3 (0.9)
Unknown	45 (13.0)
Treatment within 30 days of infection episode	
IMiD-based	43 (12.5)
PI-based	71 (20.6)
mAb-based	22 (6.4)
IMiD + PI combination	110 (31.9)
mAb combination with IMiD, PI	99 (28.7)

KU LEUVEN

Infection-related early mortality in patients with MM

- 3,107 newly diagnosed MM patients from UK MRC MM trials between 1980 and 2002
- death rated within 2 months: 10%
- **45%** of deaths attributable to infection
- renal failure as predisposing factor

- Swedish population based study
- n = 9,253 diagnosed between 1988 and 2004
- death rate within 2 months: **10%**
- 22% of deaths attributable to infection
- 3y death risk of infection: 12% (vs 2% in controls)

Therapy-related causes of death in MM transplant-eligible patients

Therapy-related causes of death in MM non transplant-eligible patients

COVID-19: a serious threat for MM patients

Chari et al. Blood 2020;136:3033

KU LEUVEN

Infection risk with dara-based combinations in newly diagnosed MM patients

	Dara-Rd ¹	Rd
Ν	364	365
Grade ≥ 3 neutropenia	50%	35%
Grade ≥ 3 Infections	32%	23%
Pneumonia	14%	8%

	Dara-VTd ¹	VTd
Ν	536	538
Grade ≥ 3 neutropenia	28%	15%
Grade ≥ 3 Infections	22%	20%
Pneumonia	4%	2%

	Dara-VMP ²	VMP
Ν	346	354
Grade ≥ 3 neutropenia	40%	39%
Grade ≥ 3 Infections	23%	15%
Pneumonia	11%	4%

	Dara-VRd⁴	VRd
Ν	99	102
Grade ≥ 3 neutropenia	41%	22%
Grade ≥ 3 Infections	23%	22%
Pneumonia	9%	11%

Infection risk with anti-CD38 based combinations in relapsed MM patients

	Dara-Kd ¹	Kd
Ν	308	153
Grade ≥ 3 neutropenia	10%	6%
Grade ≥ 3 lymphopenia	7%	7%
Grade \geq 3 infections*	27%*	15%*
Pneumonia	13%	9%
	Dara-Pd ³	Pd
N	Dara-Pd ³ 149	Pd 150
N Grade ≥ 3 neutropenia	Dara-Pd ³ 149 68%	Pd 150 51%
N Grade ≥ 3 neutropenia Grade ≥ 3 lymphopenia	Dara-Pd ³ 149 68% 12%	Pd 150 51% 3%
N Grade ≥ 3 neutropenia Grade ≥ 3 lymphopenia Grade ≥ 3 infections	Dara-Pd ³ 149 68% 12% 24%	Pd 150 51% 3% 20%
N Grade ≥ 3 neutropenia Grade ≥ 3 lymphopenia Grade ≥ 3 infections	Dara-Pd ³ 149 68% 12% 24% 11%	Pd 150 51% 3% 20% 6%

Isa-Kd²	Kd
177	122
19%	7%
NR	NR
32%*	24%*
21%	14%
Isa-Pd ⁴	Pd
Isa-Pd⁴ 152	Pd 149
lsa-Pd⁴ 152 85%	Pd 149 70%
Isa-Pd⁴ 152 85% NR	Pd 149 70% NR
Isa-Pd⁴ 152 85% NR NR	Pd 149 70% NR NR

* respiratory infections

1. Dimopoulos et al. Lancet 2020;396:186

2. Moreau et al. Lancet 2021;397:2361

3. Dimopoulos et al. Lancet Oncol 2021;22:801 4. Attal et al. Lancet 2019;394:2096

Infection risk with T-cell redirecting therapies

Cilta-cel	N = 97		lde-ce
	Any grade	Grade ≥ 3	
neutropenia	96%	95%	neutro
lymphopenia	53%	50%	lymph
Infection	58%	20%	Infecti
hypogammaglobulinemia	NR	NR	hypog

Berdeja et al. Lancet 2021: Epub june 24

lde-cel	N = 128	
	Any grade	Grade ≥ 3
neutropenia	91%	89%
lymphopenia	27%	27%
Infection	69%	22%
hypogammaglobulinemia	21%	< 1%

Munshi et al. New Engl J Med 2021;348:705

	Teclistamab¹ (RP2D, N = 40)	Elranatamab² (N = 30)	Talquetamab ³ (RP2D, N = 30)
grade ≥ 3 neutropenia	40%	53%	60%
grade ≥ 3 lymphopenia	NR	83%	30%
grade \geq 3 infection	23%	NR	3%

1. Krishan et al. ASCO 2021, abstract 8007

2. Bahlis et al. ASCO 2021, abstract 8006

3. Berdeja et al. ACO 2021, abstract 8008

Management of neutropenic fever

MASCC: Multinational Association for Supportive Care in Cancer ESBL: extended-spectrum β -lactamase FQ: fluoroquinolone

HOW TO PREVENT INFECTIONS

- Awarenes
- Risk assessment
- Prophylactic/pre-emptive treatment

Vaccination

Risk stratification predictive model for infection in MM

Parameter	Category
ECOG	≥2
LDH	≥ 200 U/I
Hemoglobin	≤ 11 g/dl
Serum β2 microglobulin	≥ 6 mg/l

High-risk patiënts had 24% risk of an early severe infection vs 7% in low-risk patients

Risk stratification for infection risk in MM newly diagnosed elderly and daratumumab-based

- Pooled analysis from Alcyone and Maia data
- Identification of predictive markers for grade \geq 3 infections during first 6 mo

Parameter	Category	points
Age (y)	≥ 75	4
LDH	High	6
Albumin (g/l)	≤ 35	6
Elevated AST	Abnormal	7

 Patients with ≥ 2 risk factors were at increased risk (29.3% vs 15.7%) for infection during treatment with daratumumab

Predictive factors for Covid-19 outcome in MM patients

Variable	Р	OR (95% CI)
Age	0,006	1,04 (1,01 - 1,08)
ISS3	0,899	1,05 (0,49 - 2,22)
High-risk disease	0,013	2,35 (1,20 - 4,66)
Renal disease	0,014	2,71 (1,23 - 6,08)
Active or progressive disease	0,063	1,91 (0,96 – 3,81)
Comorbidities	0,711	0,88 (0,44 - 1,75)
Prior anti-CD38	0,558	0,77 (0,31 – 1,85)
Active anti-CD38	0,262	1,68 (0,68 – 4,21)
Active IMiD	0,769	1,10 (0,59 – 2,07)

N = 650; 36% diagnosed in 2019 or 2020; 54% received first-line treatment Results shown for multivariate analysis

General strategies for infection prevention in MM*

Prophylaxis	agent
antibiotics	fluoroquinolone, (TMP-SMX)
	 VZV prophylaxis when: post ASCT and during treatment with PI and MoAbs how: aciclovir, valaciclovir, famciclovir, penciclovir
	 PCJ: when: in case of severe lymphopenia (CD4 < 200/µl) how: TMP-SMX/pentamidine Candida when: high-dose steroids, prolonged neutropenia, broad-spectrum AB how: azole
	Severe neutropenia or moderate neutropenia + risk factors
	secondary prevention of severe bacterial infections

Antibiotic prophylaxis for newly diagnosed MM patients

- n = 977 newly diagnosed patients
- Randomized between 500 mg of oral levofloxacin and placebo for 12 weeks
- Treatment initiated within 2 weeks of start antimyeloma therapy

MM patients have low titers of protective antibodies

Bacterial antigens

Proportion of individuals with protective levels of anti-bacterial IgG

Chicca et al.Blood Cancer J 2020;10:114

KU LEUVEN

General strategies for infection prevention in MM*

Prophylaxis	agent
antiviral	 VZV prophylaxis when: post ASCT and during treatment with PI and MoAbs how: aciclovir, valaciclovir, famciclovir, penciclovir Hepatitis B & C: according to viral serology (and PCR)
antifungal	 PCJ: when: in case of severe lymphopenia (CD4 < 200/µl) how: TMP-SMX/pentamidine Candida when: high-dose steroids, prolonged neutropenia, antibiotics how: azole
G-CSF	Severe neutropenia or moderate neutropenia + risk factors
polyclonal immunoglobulins	secondary prevention of severe bacterial infections

Prophylactic use of intravenous immunoglobulins in MM patients

- Limited number of recent studies available
- hypogammaglobulinemia increases with disease duration and new treatments
- IVIg are expensive with limited availability
- according to guidelines IVIg can be recommended for:
 - patients with severe and symptomatic hypogammaglobulinemia
 - 0,4-0,5 g/kg every 3-4 weeks

Infections in patients on daratumumab with or

Conclusions

- remember that infections are <u>the most important cause of non-disease related</u> <u>mortality</u> in multiple myeloma
- bacterial and viral infections are frequent and mostly affect the respiratory tract
- infections primarily occur in the first months after diagnosis and after multiple relapses when the immune system is more exhausted
- combined treatment modalities and prolonged treatment require <u>continuous</u> <u>vigilance</u> for infection
- anti-viral and antibiotic <u>prophylaxis</u> is key for infection prevention and should be based on guidelines and patient-related risk factors
- <u>prompt initiation</u> of anti-infectious treatment is required to reduce infection-related mortality