

Vaccinations including COVID-19

Heinz Ludwig

Wilhelminen Cancer Research Institute

c/o I. Medizinische Abteilung, Zentrum für Onkologie und Hämatologie und Palliativmedizin,

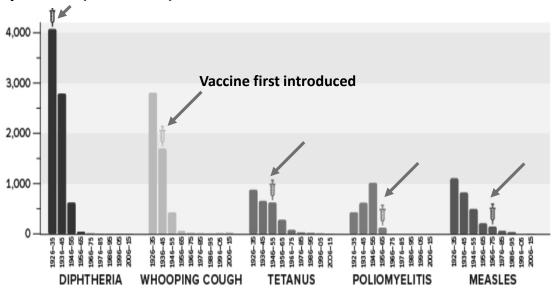
Klinik Ottakring, Wien

Conflict of Interest Disclosure

Research Funding: Amgen, Takeda, Sanofi

Speaker's Bureau, Advisory Boards: Amgen, Takeda, Celgene-BMS, Janssen, Sanofi, Seattle Genetics

Vaccines represent one of the greatest public health achievements of modern medicine. Blumenthal KG JAMA 2021



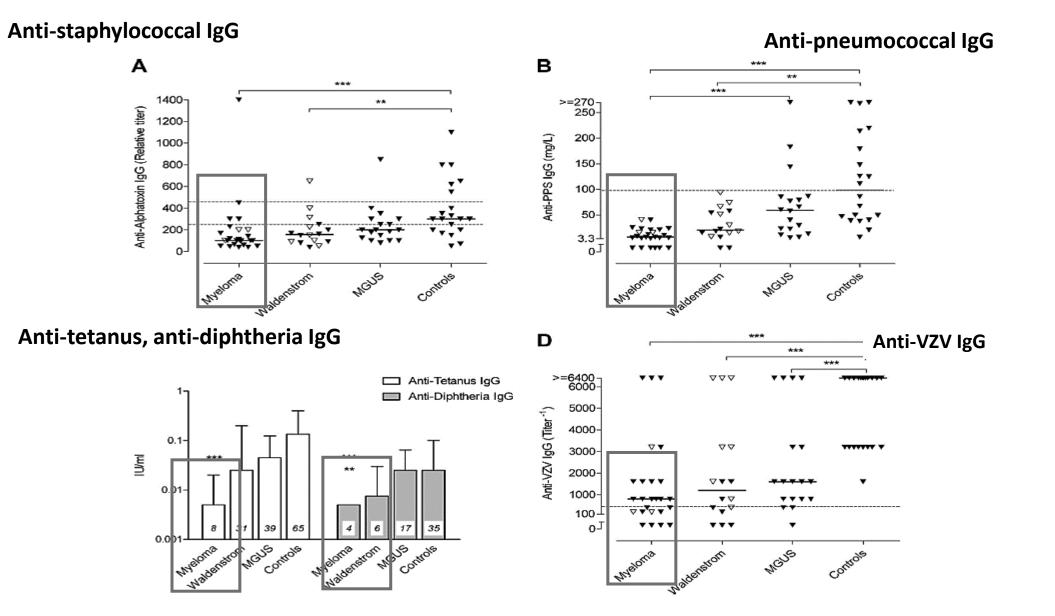
Vaccination has safed more lives than any other medical intervention

Vaccination has eradicated

- Smallpox
- Polio
- (Measles)

Australia: Number of deaths from diseases now vaccinated against, by decade (1926-2015)

When a large proportion of a community is immunised, it can lead to a situation where there are very low disease levels in that population. This is referred to as control of the disease.


USA: Comparison of 20th century annual morbidity and current estimates of vaccine-preventable disease

Disease	20th Century annual morbidity (2)	2016 Reported cases (3)	Percent decrease (%)
Smallpox	29,005	0	100
Diphtheria	21,053	0	100
Measles	530,217	69	>99
Mumps	162,344	5,311	97
Pertussis	200,752	15,737	92
Polio (paralytic)	16,316	0	100
Rubella	47,745	5	>99
Congenital rubella syndrome	152	1	99
Tetanus	580	33	94
Haemophilus influenzae	20,000	22*	>99

*Haemophilus influenzae type b (Hib) < 5 y of age.

Orenstein WA et al., PNAS 2017

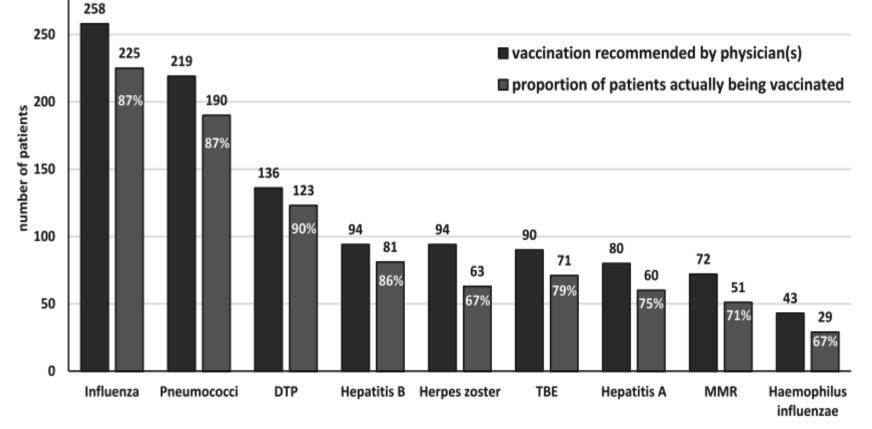
Myeloma patients frequently lack protective immunity

Heinz Ludwig[©] 2021

Karlsson J Clin and Vaccine Immunol 2011

WCRI Wilhelminen Cancer Research Institute

WCR Wilhelminen Cancer Research Institute

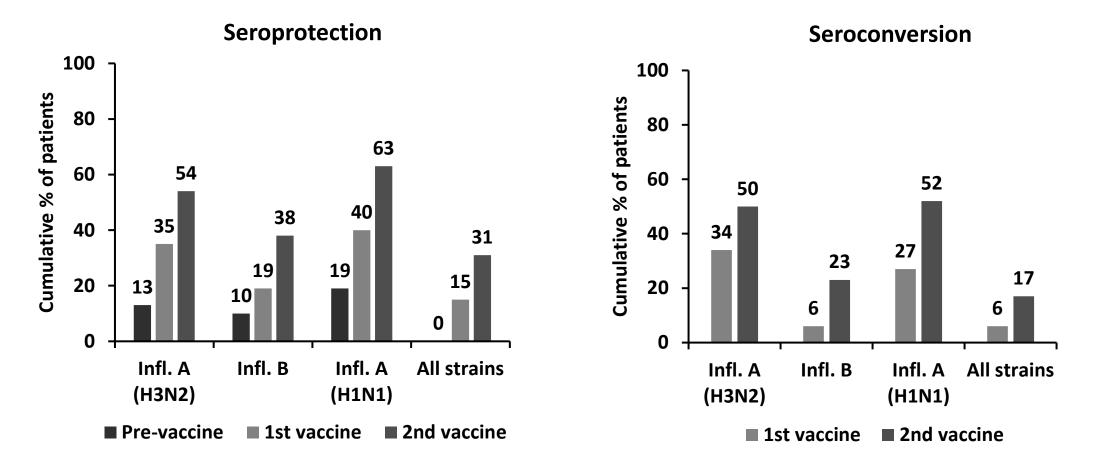

Recommendations for vaccination of patients with MM

Vaccine	Recommendation	No. of doses	Recommended by
Influenza	Tri- or quadri-valent vaccine	1 annually	CDC, NCCN
Pneumococci	PCV13 followed by PPSV 23	1	NCCN
	Shingrix (recombinant glycoprotein)	2	NCCN
Herpes zoster	or Zostavax (live-attenuated)	4	EMN
Haemophilus influenzae type b	mophilus influenzae type b Vaccination		CDC, NCCN
Hepatitis A	Nonimmune pts & close contacts travelling to endemic areas	2	NCCN
Hepatitis B	Nonimmune pts & close contacts travelling to endemic areas	3	NCCN
Meningococci	Pts with complement deficiency or splenectomy	1-2	CDC, NCCN
Tetanus, Diphtheria, Pertussis	Only if no primary vaccination, Tetanus based on epidemiology		CDC, NCCN, WHO, EMN

WCR Cancer Research

Myeloma patients show a high compliance rate with Recommendations for vaccination

335 patients responded during the survey



DTP = diphtheria, tetanus, pertussis; MMR = measles, mumps, rubella; TBE = tick borne encephalitis

Ludwig H et al. Hemasphere 2021

Patients with MM show reduced antibody formation to influenza WCR Institute vaccination. A second dose improves immune response

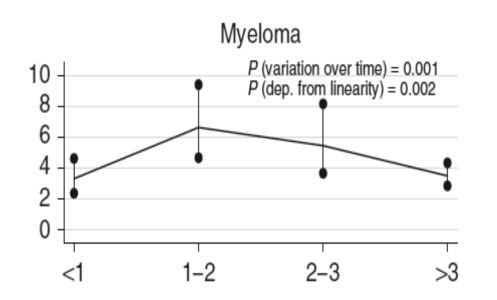
Hahn M, et al. Haematologica 2015;100:e285.

Pneumococcal diseases

Pneumococci cause Pneumonia, Bacteriemia, Meningitis, Otitis Media

PCV 13 > 8 weeks apart PPSV23 > 5 years apart	PPSV23 > 5 years apart PPSV23
---	-------------------------------

Response to Pneumovax II (23 valent) in 52 patients with multiple myeloma


Protective titer defined as $\geq 1/640$, the geometric mean titre of the normal adult UK population

		cination = 48)		Post-vaccination (<i>n</i> = 43)			
Protective antibody titre	3	6%	17	39%			
Suboptimal antibody titre	45	94%	26	61%			
Titre below 10th percentile	31	70%	13	30%			
Fourfold increase in titre			24	56%			
Geometric mean titre	1/53		1/287				

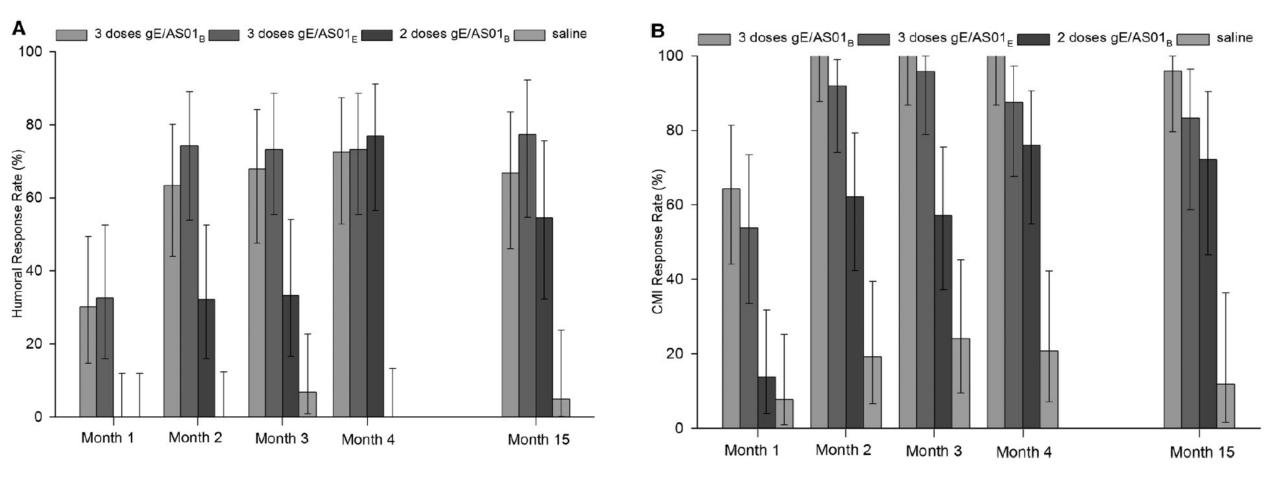
Herpes Zoster

Herpes zoster subunit vaccine (HZ/su) containing recombinant varicella–zoster virus glycoprotein E and the AS01B adjuvant system (Shingrix[©])

Zoster odds ratio by time since diagnosis of multiple myeloma Vaccine efficacy in general population 89.9% during a 3 year FU

Risk of post herpetic neuralgia in myeloma similar to general population (Forbes at el., 2016)

Hanson E et al., Br J Cancer 2017


Heinz Ludwig[©] 2021

Total Vaccinated Cohort in ZOE-50 and ZOE-70 @4yrs 87.5% 1.0-**Risk reduction** 0.05-0.04-Placebo 0.8-Cumulative Incidence 0.03-0.02-0.6-0.01-HZ/su 0.4-0.00 6 12 18 24 30 36 42 48 0 0.2-Efficacy similar in all age groups 0.0 0 48 6 12 24 30 36 18 Month from 30 Days after Dose 2

Cunnigham AL et al., NEJM 2016

Wilhelminen Cancer Research

Varicella-zoster virus glycoprotein E (gE) adjuvanted either with AS01g or AS01E after ASCT in patients with MM, NHL, and Hodgkin's disease

Humoral immune response

Cellular immune response

Heinz Ludwig[©] 2021

Stadtmauer E et al., Blood 2014

R Wilhelminen Cancer Research

Vaccination recommendations after autologous or allogeneic stem cell transplantation (NCCN)

Inactivated Vaccines ¹	Recommended Timing after HCT	Number of Doses
DTaP (Diphtheria/Tetanus/Acellular Pertussis)	6-12 months	3
Pneumococcal vaccination		
Conjugated 13-valent vaccine	6-12 months	3
• Upon completion of PCV13 series, then PPSV23	≥12 months	1
Hepatitis A ¹ (Hep A)	6-12 months	2
Hepatitis B ¹ (Hep B)	6-12 months	3
Meningococcal conjugate vaccine ²	6-12 months	1-2
Influenza (injectable) ³	4-6 months	1 ³ , annually
Inactivated Polio vaccine	6-12 months	3
Recombinant zoster vaccine	>2 months after autologous HCT, consider after allogeneic HCT ⁴	2
Live Vaccines	Recommended Timing after HCT	Number of Doses
Measles/Mumps/Rubella (MMR) ⁵	≥24 months	1-2
	(if no GvHD or ongoing immunosuppression and if patient is seronegative for measles, mumps, and/or rubella)	
Varicella vaccine ⁵	≥24 months (if no GVHD or ongoing immunosuppression and patient is seronegative for varicella)	1
Zoster vaccine ^{5,6} (category 3)	May be considered at ≥24 months	1
	(if no GVHD or ongoing immunosuppression)	

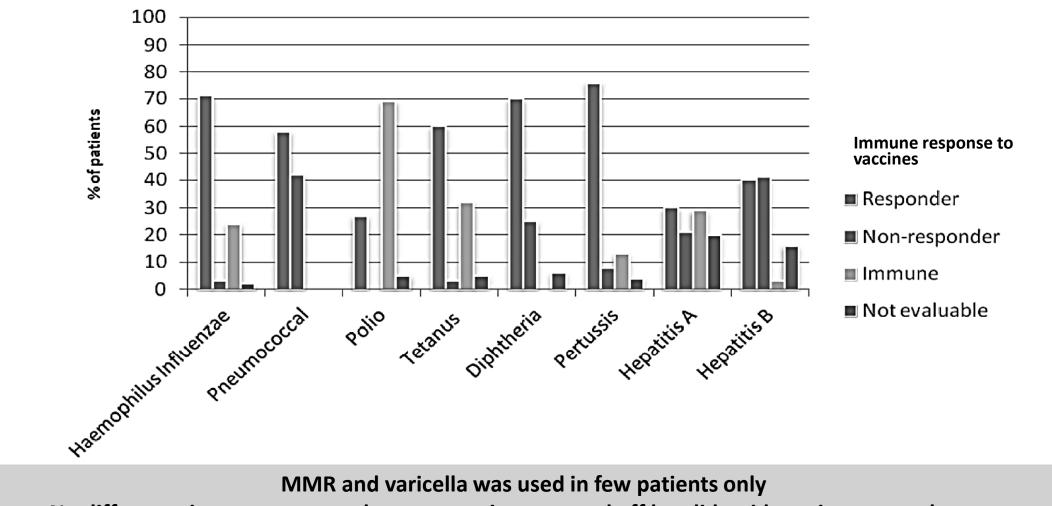
1 Strongly consider if clinically indicated. May consider Hepatitis A and B combined vaccine if immunization for both is needed.

2 Meningococcal B vaccine should be considered for high-risk patients such as patients with asplenia or complement deficiency or patients receiving eculizumab.

³ As antibody response may be suboptimal, EMN recommends a second administration, or confirmation of antibody response by adequate testing

⁴ Efficacy in allogeneic HCT, in the presence of GVHD, or ongoing immunosuppression has not been established (Bastidas A et al. JAMA 2019;322:123-133)

⁵ MMR and varicella/zoster vaccines may be given together or 4 weeks apart


⁶ Because of insufficient data on safety and efficacy of live zoster vaccine among HCT recipients, physicians should assess the immune status of each recipient

Modified according to NCCN Guidelines V 1/2020

WCR Cancer Research

Re-vaccination following ASCT

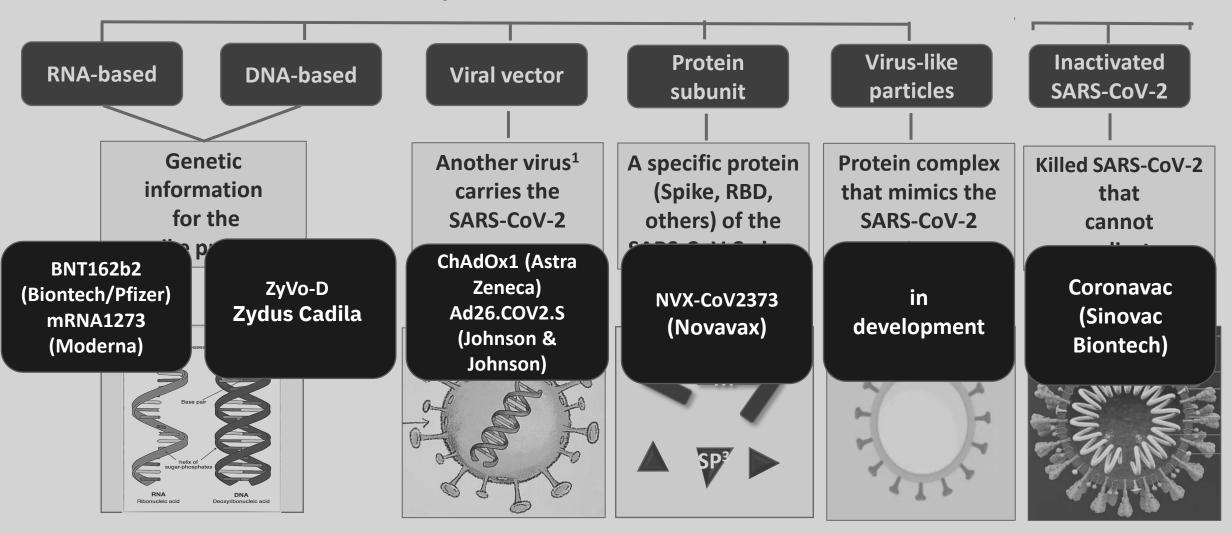
No difference in response rates between patients on and off lenalidomide maintenance therapy

Heinz Ludwig[©] 2021

Palazzo M et al., Biol Bone Marrow Transpl 2019

COVID 19 (SARS-CoV-2 Virus)

- Single strand RNA virus, genetic similarity to bat coronavirus
- Thought to be the successor to <u>SARS-CoV-1</u>, the virus that caused the <u>2002–2004 SARS outbreak</u>


Risk factors for mortality in selected studies on outcome of MCRI Cancer Research mainly hospitalized COVID-19 infected patients with multiple myeloma

	I batie I – –	Age	Time from	Morta- Iity rate	Risk Factors for Mortality					
		Median	diagn osis		Age	ISS 3	HR cyto- genetics	Renal disease	Active Disease/PD	Co- morbidities
Chari A et al.	617	69y (34-92)		31.9%	1.04 (p=0.006)	1.05 (p=0.899)	2.35 (p=0.013)	2.71 (p=0.014)	1.91 (p=0.063)	0.88 (p=0.711)
Martinez-Lopez et al.	167	71y (62-78)		33.5%	3.0 (p=0.006)			5.6 (p<0.001)	2.7 (p=0.017)	1.7 (p=0.18)*
Wang B et al.	58	67y	30 mos	24%	1.32 (p=0.744)		1.44 (p=0.747)	0.82 (p=1.000)		2 (p=0.055)
Hultcrantz M et al.	100	68y (41-91)		22%	1.8 (p=0.26)					2.2 (0.12)*
Cook G et al.	75	73y (47-88)	28 mos	NDMM: 54.8%, RRMM: 50%						
Engelhardt M et al.	21	59y (46-83)	20 mos	0%						

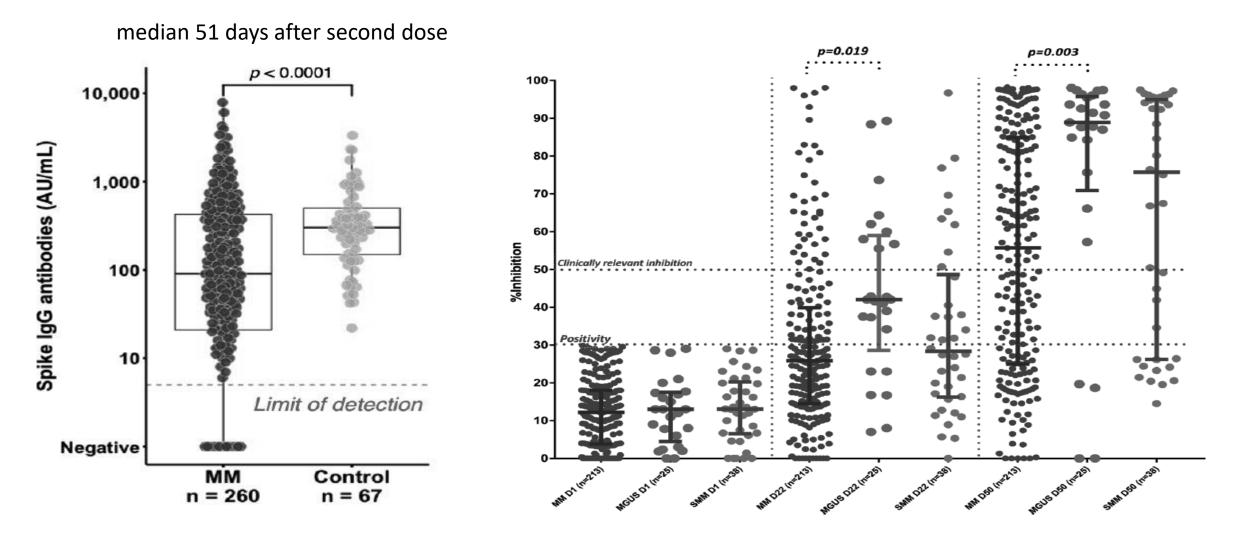
Risk factors for mortality: Age, HR cytogenetics, poorly controlled MM, renal disease, comorbidities

Platforms used for manufactoring of SARS-CoV-2 vaccines

Component Vaccines

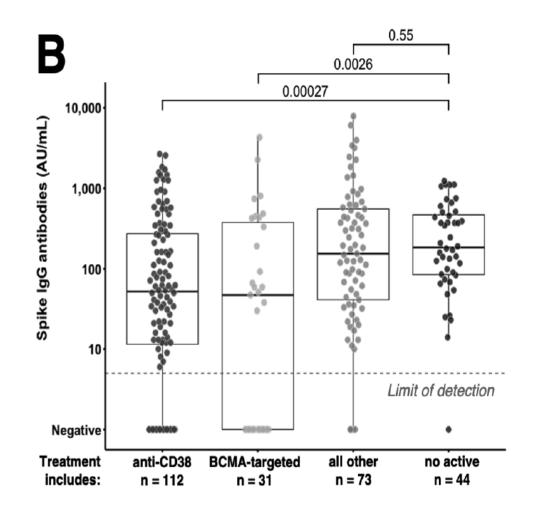
¹Adenovirus, Newcastle disease virus, Lentivirus, Vesicular stomatitis virus, Measles virus, ²Membrane proteins, ³Spike proteins

Heinz Ludwig[©] 2021


Ludwig H et al., Am J Hematol 2021

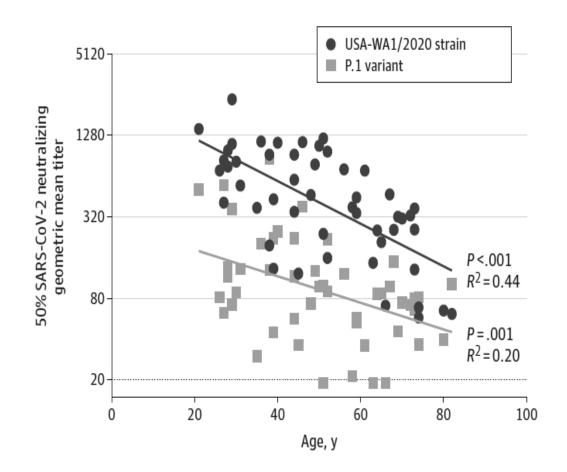
Wilhelminen Cancer Research Institute

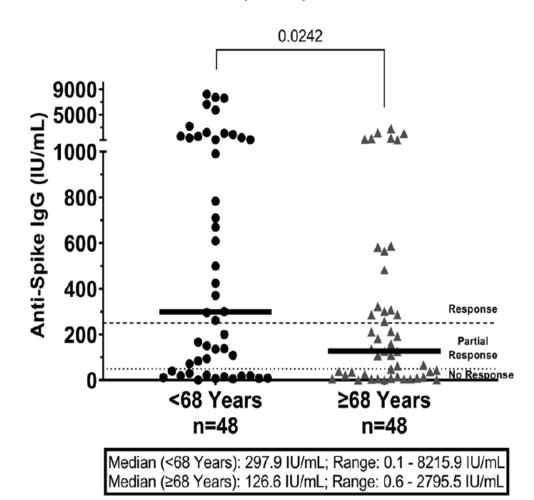
Whole Virus


IgG antibody response to COVID-19 in MM and neutralizing antibody response in MGUS, SMM and MM

Van Oekelen O et al., Cancer Cell 2021, Terpos E et al., Blood Cancer Journal 2021

Antibody response and therapy and risk factors for poor response

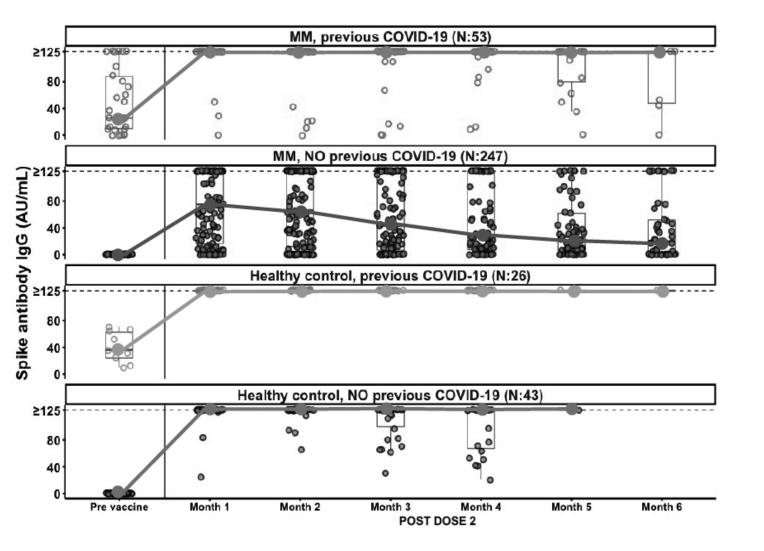

Clinical data	OR	P value					
Univariate analysis							
> 3 previous lines of treatment	2,16	0,035					
> 5 previous lines of treatment	2,93	0,009					
Lymphopenia ≥ G3 (< 500/µL)	2,89	0,018					
Anti-CD38 mAb	2,02	0,042					
BCMA-targeted therapy	5,14	<0.001					
BCMA-targeted bispecific	29,80	<0.001					
No active treatment	0,10	0,005					
Multivariate ana	alysis						
Response status (s)CR (0/1)	0,389	0.037					
Lymphopenia ≥ Grade 3 (0/1)	2,463	0.076					
BCMA-targeted treatment (0/1)	10,269	<0.001					
anti-CD38 monoclonal antibody (0/1)	4,258	0.005					

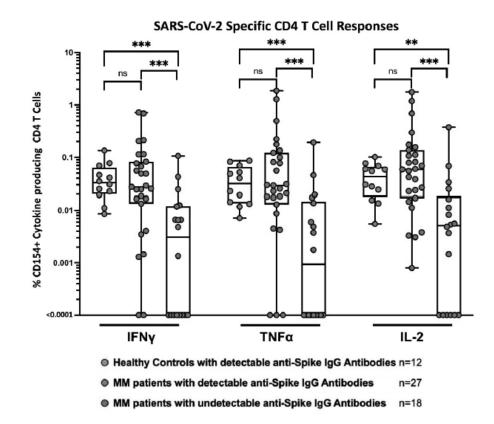


Neutralizing antibody titers correlate with age

Normal Population

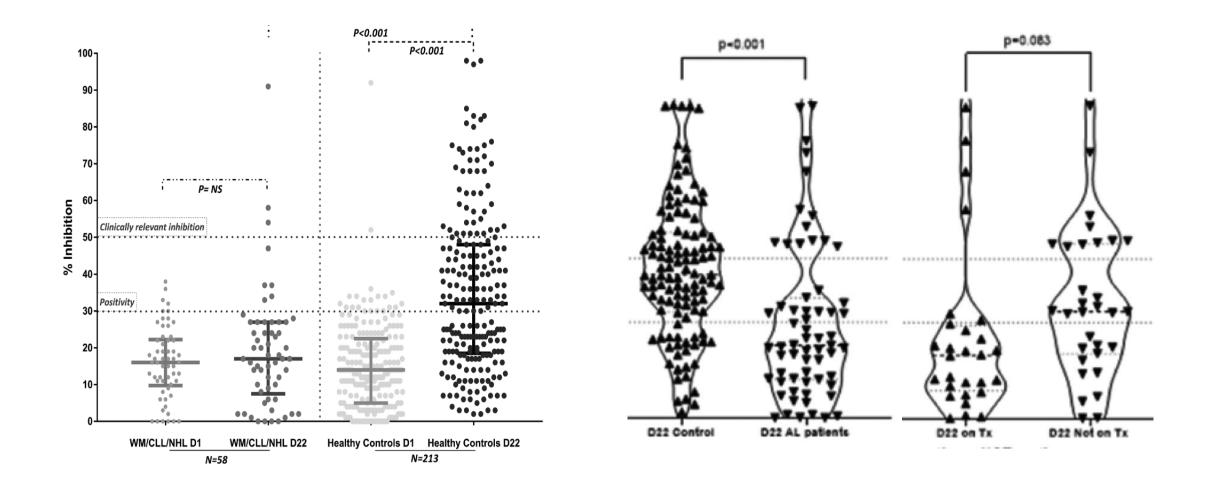
Multiple Myeloma



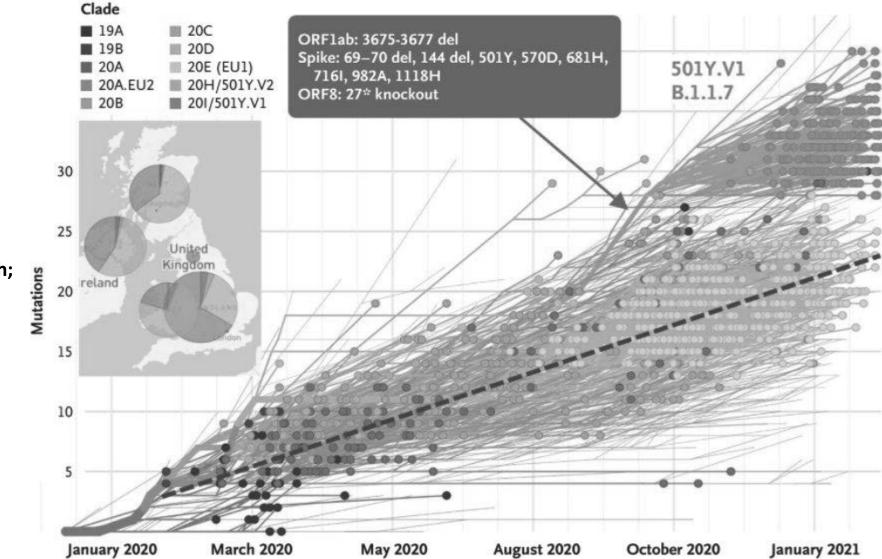

Bates T et al., JAMA 2021

Stampfer SD et al., Leukemia 2021

WER Wilhelminen Cancer Research Antibody response declines more rapidly in vaccinated patients


T cell responses are diminished in IgG non-responders

Courtsey van Oekelen (IMW2021)


Titers of neutralizing antibodies are low in MW, CLL, and Amyloidosis

Gavriatopoulou M et al., Clin Exp Med 2021, Kastritis E et al., Hemasphere 2021

WCR Withelminen Cancer Research Occurrence of mutations of SARS-CoV- 2 over time in 1510 SARS-CoV-2 viruses

Mutations occur preferentially in a milieu of partial immune control

2 single letter mutations/month; half of as fast as influenza and 25% of the rate Of HIV

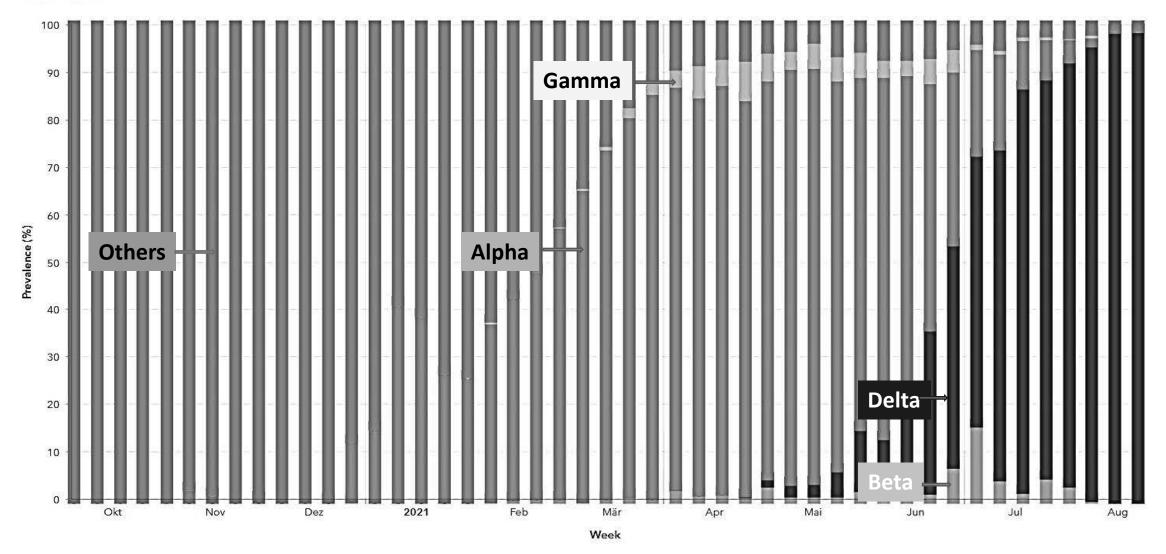
Heinz Ludwig[©] 2021

Correy L et a., NEJM 2021

Variants of concern

WHO Label	Lineage + additional mutations	Country first detected (community)	Spike mutations of interest	Year and month first detected	Evidence for impact on transmissiblity	For impact on immunity	For impact on severity	Transmission in EU/EEA
Alpha	B.1.1.7	United Kingdom	N501Y, D614G, P681H	September 2020	Yes	Νο	Yes	Community
n/a	B.1.1.7+ E484K	United Kingdom	E484K, N501Y, D614G, P681H	December 2020	Yes	Yes	Yes	Outbreaks
Beta	B.1.351	South Africa	K417N, E484K, N501Y, D614G, A701V	September 2020	Yes	Yes	Yes	Community
Gamma	P.1	Brazil	K417T, E484K, N501Y, D614G, H655Y	December 2020	Yes	Yes	Yes	Community
Delta	B.1.617.2	India	L452R, T478K, D614G, P681R	December 2020	Yes	Yes	Yes	Dominant

Mutations in spike protein residues 319-541 (receptor binding domain) and 613-705 (the S1 part of the S1/S2 junction and a small stretch on the S2 side), and any additional unusual changes specific to the variant.


Heinz Ludwig[©] 2021

European Centre for Disease Prevention and Control, August 2021

Variant trends in Spain (October 2020 – August 2021)

Variant trends

Heinz Ludwig[©] 2021

European Center of Disease Control and Prevention, assessed Sept 2021

Clinical and virologic features of variants of concern in Singapore (January 1- May 22, 2021)

Predictors for composite outcome of oxygen requirement, ICU admission or death (Singapore, January 1 – May 22, 2021)

p-value

0.920

0.807

0.020

< 0.001

< 0.001

0.041

Univariable model

Crude OR (95% CI)

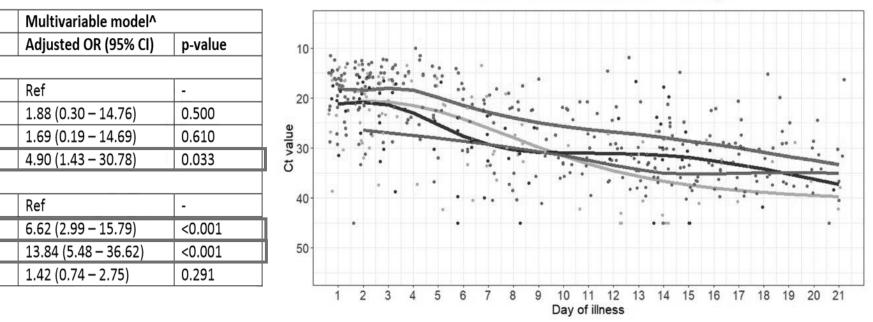
1.10(0.18 - 8.41)

0.78(0.09 - 6.58)

5.55(1.66 - 34.44)

7.91 (3.64 - 18.52)

19.73 (8.13 - 49.99)


1.91(1.03 - 3.58)

Ref

Ref

Ct values and days of illness with different variants (Singapore, January 1 – May 22, 2021)

- B.1.1.7 - B.1.351 - B.1.617.2 - Wild-type

Variant Others

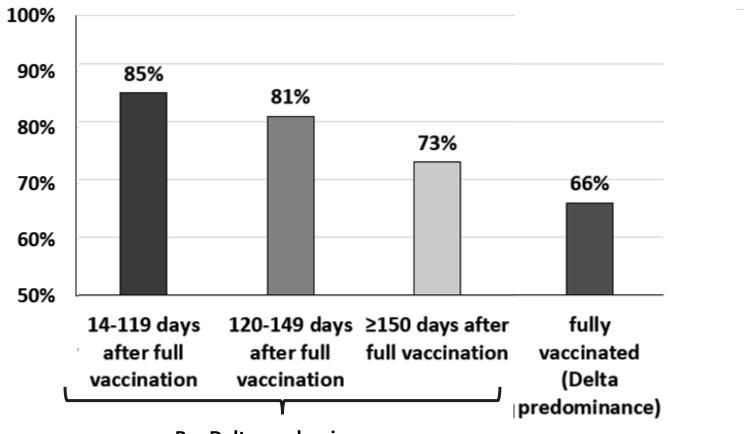
B.1.1.7 (Alpha)

B.1.351 (Beta)

Age group (years)

<45

≥65


45-64

Female sex

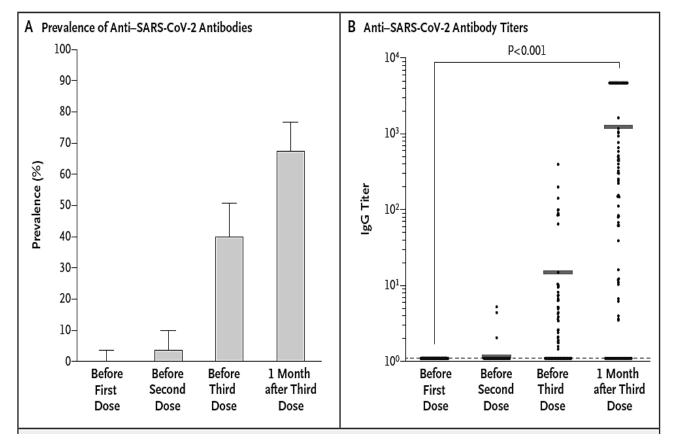
B.1.617.2 (Delta)

Effectiveness of COVID-19 vaccines against SARS-CoV-2 infection among frontline workers by (pre-) Delta variant dominance and time since full vaccination

8 US locations, December 2020-August 2021

Pre Delta predominance

What can be offered to those with insufficient antibody response


Heterologous prime boost vaccination

A third vaccine dose

Monoclonal antibody combination (REGEN-COV2®)

For those with insufficient immunity social distancing and mask wearing recommended until the end of the pandemic

Administer a third dose in patients with immunossupression*

Three doses of BNT162b2

NCCN

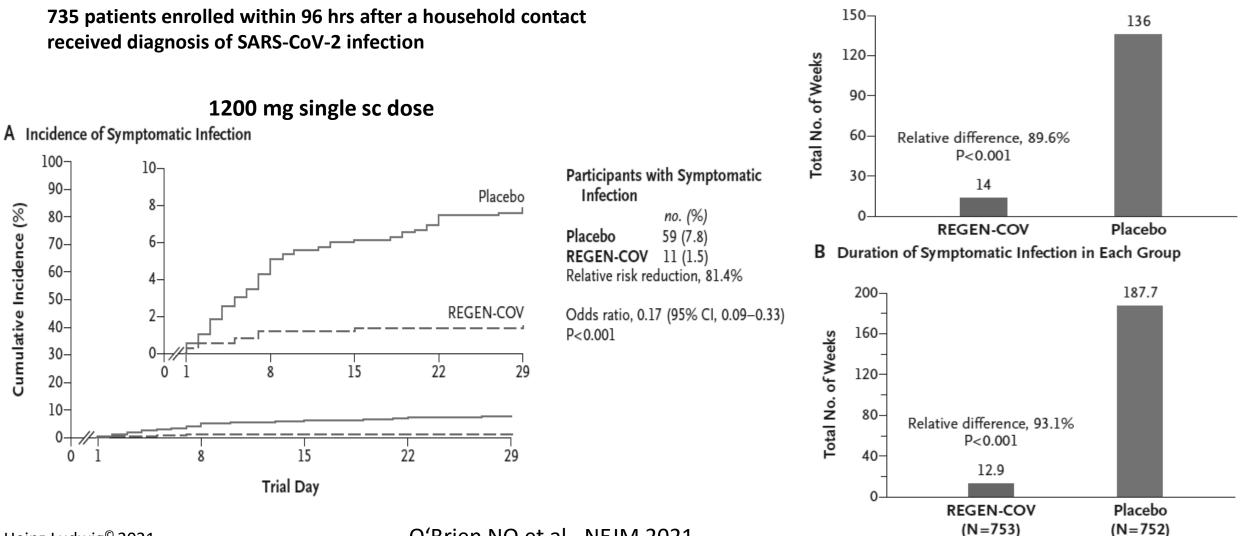
Recommends that all patients with

hematologic malignancies receive a third dose,

Wilhelminen Cancer Research

regardless whether they are receiving cancer

therapy


101 solid-organ transplant recipients (mean [±SD] age, 58±2 years Organ transplants: kidney 78, Liver 12, Lung or heart 8, pancreas 3 patients

* FDA, News Release, August 12, 2021, Kramar N et al., NEJM 2021, NCCN Cancer and COVID-19 vaccination, 08/30/2021 Heinz Ludwig[©] 2021

Subcutaneous REGEN-COV2[®] antibody combination to prevent COVID-19

F Duration of High Viral Load in Each Group

Heinz Ludwig[©] 2021

O'Brien NO et al., NEJM 2021

Summary

- All patients with MGUS, SMM, MM, and monoclonal gammopathies of clinical significance should follow the recommendations for vaccination
- Patients should be vaccinated preferably
 - Before onset of active MM
 - During well controlled disease at times of MRD^{neg}, CR, or VGPR
 - Before start of therapy, before stem cell collection, >3 months after ASCT
 - During periods without therapy (exception: lenalidomide maintenance therapy)
- COVID-19: Consider risk factors for poor response
 - Uncontrolled disease
 - Immunoparesis, lymphopenia
 - Number of prior lines of therapy
 - Age, certain treatments such as CD38 antibodies, and BCMA targeted therapy including BiTEs and CAR-T cells

Heinz Ludwig[©] 2021

Modified according to Ludwig et al., Lancet Haematology, in press

Summary

- Routine evaluation of the immune response to vaccination is not supported by the CDC* and other organizations but enables identification of patients with poor anti-COVID response
- In case of insufficient anti-COVID-19 response
 - Consider a third vaccine dose
 - In patients who have been exposed to COVID-19 and in those unprotected and in need of immunosuppressive therapy use of monoclonal anti-spike antibodies may be considered
- Health care personnel caring for myeloma patients and household members should be vaccinated
- Patients without anti-COVID immunity will depend on 'herd immunity' and 'ring vaccination' of partners and close social contacts and will need to maintain protective measures
- Many questions remain unresolved

Heinz Ludwig[©] 2021

Modified according to Ludwig et al., Lancet Haematology, in press

Have a safe journey home and keep the great science and our social gatherings in good memory